(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
h(e(x), y) → h(d(x, y), s(y))
d(g(g(0, x), y), s(z)) → g(e(x), d(g(g(0, x), y), z))
d(g(g(0, x), y), 0) → e(y)
d(g(0, x), y) → e(x)
d(g(x, y), z) → g(d(x, z), e(y))
g(e(x), e(y)) → e(g(x, y))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
h(e(x), y) → h(d(x, y), s(y))
d(g(g(0', x), y), s(z)) → g(e(x), d(g(g(0', x), y), z))
d(g(g(0', x), y), 0') → e(y)
d(g(0', x), y) → e(x)
d(g(x, y), z) → g(d(x, z), e(y))
g(e(x), e(y)) → e(g(x, y))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
h(e(x), y) → h(d(x, y), s(y))
d(g(g(0', x), y), s(z)) → g(e(x), d(g(g(0', x), y), z))
d(g(g(0', x), y), 0') → e(y)
d(g(0', x), y) → e(x)
d(g(x, y), z) → g(d(x, z), e(y))
g(e(x), e(y)) → e(g(x, y))
Types:
h :: e:s:0' → e:s:0' → h
e :: e:s:0' → e:s:0'
d :: e:s:0' → e:s:0' → e:s:0'
s :: e:s:0' → e:s:0'
g :: e:s:0' → e:s:0' → e:s:0'
0' :: e:s:0'
hole_h1_0 :: h
hole_e:s:0'2_0 :: e:s:0'
gen_e:s:0'3_0 :: Nat → e:s:0'
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
h,
d,
gThey will be analysed ascendingly in the following order:
d < h
g < d
(6) Obligation:
Innermost TRS:
Rules:
h(
e(
x),
y) →
h(
d(
x,
y),
s(
y))
d(
g(
g(
0',
x),
y),
s(
z)) →
g(
e(
x),
d(
g(
g(
0',
x),
y),
z))
d(
g(
g(
0',
x),
y),
0') →
e(
y)
d(
g(
0',
x),
y) →
e(
x)
d(
g(
x,
y),
z) →
g(
d(
x,
z),
e(
y))
g(
e(
x),
e(
y)) →
e(
g(
x,
y))
Types:
h :: e:s:0' → e:s:0' → h
e :: e:s:0' → e:s:0'
d :: e:s:0' → e:s:0' → e:s:0'
s :: e:s:0' → e:s:0'
g :: e:s:0' → e:s:0' → e:s:0'
0' :: e:s:0'
hole_h1_0 :: h
hole_e:s:0'2_0 :: e:s:0'
gen_e:s:0'3_0 :: Nat → e:s:0'
Generator Equations:
gen_e:s:0'3_0(0) ⇔ 0'
gen_e:s:0'3_0(+(x, 1)) ⇔ e(gen_e:s:0'3_0(x))
The following defined symbols remain to be analysed:
g, h, d
They will be analysed ascendingly in the following order:
d < h
g < d
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
g(
gen_e:s:0'3_0(
+(
1,
n5_0)),
gen_e:s:0'3_0(
+(
1,
n5_0))) →
*4_0, rt ∈ Ω(n5
0)
Induction Base:
g(gen_e:s:0'3_0(+(1, 0)), gen_e:s:0'3_0(+(1, 0)))
Induction Step:
g(gen_e:s:0'3_0(+(1, +(n5_0, 1))), gen_e:s:0'3_0(+(1, +(n5_0, 1)))) →RΩ(1)
e(g(gen_e:s:0'3_0(+(1, n5_0)), gen_e:s:0'3_0(+(1, n5_0)))) →IH
e(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
h(
e(
x),
y) →
h(
d(
x,
y),
s(
y))
d(
g(
g(
0',
x),
y),
s(
z)) →
g(
e(
x),
d(
g(
g(
0',
x),
y),
z))
d(
g(
g(
0',
x),
y),
0') →
e(
y)
d(
g(
0',
x),
y) →
e(
x)
d(
g(
x,
y),
z) →
g(
d(
x,
z),
e(
y))
g(
e(
x),
e(
y)) →
e(
g(
x,
y))
Types:
h :: e:s:0' → e:s:0' → h
e :: e:s:0' → e:s:0'
d :: e:s:0' → e:s:0' → e:s:0'
s :: e:s:0' → e:s:0'
g :: e:s:0' → e:s:0' → e:s:0'
0' :: e:s:0'
hole_h1_0 :: h
hole_e:s:0'2_0 :: e:s:0'
gen_e:s:0'3_0 :: Nat → e:s:0'
Lemmas:
g(gen_e:s:0'3_0(+(1, n5_0)), gen_e:s:0'3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_e:s:0'3_0(0) ⇔ 0'
gen_e:s:0'3_0(+(x, 1)) ⇔ e(gen_e:s:0'3_0(x))
The following defined symbols remain to be analysed:
d, h
They will be analysed ascendingly in the following order:
d < h
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol d.
(11) Obligation:
Innermost TRS:
Rules:
h(
e(
x),
y) →
h(
d(
x,
y),
s(
y))
d(
g(
g(
0',
x),
y),
s(
z)) →
g(
e(
x),
d(
g(
g(
0',
x),
y),
z))
d(
g(
g(
0',
x),
y),
0') →
e(
y)
d(
g(
0',
x),
y) →
e(
x)
d(
g(
x,
y),
z) →
g(
d(
x,
z),
e(
y))
g(
e(
x),
e(
y)) →
e(
g(
x,
y))
Types:
h :: e:s:0' → e:s:0' → h
e :: e:s:0' → e:s:0'
d :: e:s:0' → e:s:0' → e:s:0'
s :: e:s:0' → e:s:0'
g :: e:s:0' → e:s:0' → e:s:0'
0' :: e:s:0'
hole_h1_0 :: h
hole_e:s:0'2_0 :: e:s:0'
gen_e:s:0'3_0 :: Nat → e:s:0'
Lemmas:
g(gen_e:s:0'3_0(+(1, n5_0)), gen_e:s:0'3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_e:s:0'3_0(0) ⇔ 0'
gen_e:s:0'3_0(+(x, 1)) ⇔ e(gen_e:s:0'3_0(x))
The following defined symbols remain to be analysed:
h
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol h.
(13) Obligation:
Innermost TRS:
Rules:
h(
e(
x),
y) →
h(
d(
x,
y),
s(
y))
d(
g(
g(
0',
x),
y),
s(
z)) →
g(
e(
x),
d(
g(
g(
0',
x),
y),
z))
d(
g(
g(
0',
x),
y),
0') →
e(
y)
d(
g(
0',
x),
y) →
e(
x)
d(
g(
x,
y),
z) →
g(
d(
x,
z),
e(
y))
g(
e(
x),
e(
y)) →
e(
g(
x,
y))
Types:
h :: e:s:0' → e:s:0' → h
e :: e:s:0' → e:s:0'
d :: e:s:0' → e:s:0' → e:s:0'
s :: e:s:0' → e:s:0'
g :: e:s:0' → e:s:0' → e:s:0'
0' :: e:s:0'
hole_h1_0 :: h
hole_e:s:0'2_0 :: e:s:0'
gen_e:s:0'3_0 :: Nat → e:s:0'
Lemmas:
g(gen_e:s:0'3_0(+(1, n5_0)), gen_e:s:0'3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_e:s:0'3_0(0) ⇔ 0'
gen_e:s:0'3_0(+(x, 1)) ⇔ e(gen_e:s:0'3_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_e:s:0'3_0(+(1, n5_0)), gen_e:s:0'3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(15) BOUNDS(n^1, INF)
(16) Obligation:
Innermost TRS:
Rules:
h(
e(
x),
y) →
h(
d(
x,
y),
s(
y))
d(
g(
g(
0',
x),
y),
s(
z)) →
g(
e(
x),
d(
g(
g(
0',
x),
y),
z))
d(
g(
g(
0',
x),
y),
0') →
e(
y)
d(
g(
0',
x),
y) →
e(
x)
d(
g(
x,
y),
z) →
g(
d(
x,
z),
e(
y))
g(
e(
x),
e(
y)) →
e(
g(
x,
y))
Types:
h :: e:s:0' → e:s:0' → h
e :: e:s:0' → e:s:0'
d :: e:s:0' → e:s:0' → e:s:0'
s :: e:s:0' → e:s:0'
g :: e:s:0' → e:s:0' → e:s:0'
0' :: e:s:0'
hole_h1_0 :: h
hole_e:s:0'2_0 :: e:s:0'
gen_e:s:0'3_0 :: Nat → e:s:0'
Lemmas:
g(gen_e:s:0'3_0(+(1, n5_0)), gen_e:s:0'3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_e:s:0'3_0(0) ⇔ 0'
gen_e:s:0'3_0(+(x, 1)) ⇔ e(gen_e:s:0'3_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_e:s:0'3_0(+(1, n5_0)), gen_e:s:0'3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(18) BOUNDS(n^1, INF)